Радиолокационные системы рлс. Радиолокационные станции: история и основные принципы работы

Радиолокационная станция (РЛС) или рада́р (англ. radar от Radio Detection and Ranging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в г., впоследствии в его написании прописные буквы были заменены строчными.

История

3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же же году , в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров . В США первый контракт военных с промышленностью был заключён в 1939 году. В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Классификация радаров

По предназначению радиолокационные станции можно классифицировать следующим образом:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • Панорамные РЛС;
  • РЛС бокового обзора;
  • Метеорологические РЛС.

По сфере применения различают военные и гражданские РЛС.

По характеру носителя:

  • Наземные РЛС
  • Морские РЛС
  • Бортовые РЛС

По типу действия

  • Первичные или пассивные
  • Вторичные или активные
  • Совмещённые

По диапазону волн:

  • Метровые
  • Сантиметровые
  • Миллиметровые

Устройство и принцип действия Первичного радиолокатора

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении времени распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передающее устройство является источником электромагнитного сигнала высокой мощности. Он может представлять из себя мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала приёмника и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмное устройство выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Когерентные РЛС

Когерентный метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

Импульсные РЛС

Принцип действия импульсного радара

Принцип определения расстояния до объекта с помощью импульсного радара

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт только в течение очень краткого времени, короткий импульс обычно приблизительно микросекунда в продолжительности, после чего он слушает эхо, в то время как импульс распространяется.

Поскольку импульс уходит далеко от радара с постоянной скоростью, время прошедшее с момента, когда импульс посылали, ко времени когда эхо получено, - ясная мера прямого расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно, это зависит от дальности обнаружения радара (данным мощностью передатчика, усилением антенны и чувствительностью приёмника). Если бы импульс посылали раньше, то эхо предыдущего импульса от отдалённой цели могло бы быть перепутано с эхом второго импульса от близкой цели.

Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду (или Герц [Гц]). Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём, примеры тому AN/APG-63, 65, 66, 67 и 70 радары. В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки и используемые алгоритмы могут обычно быстро заменяться другими, заменяя только память (ПЗУ) чипы, таким образом быстро противодействуя техники глушения противника если необходимо.

Устройство и принцип действия Вторичного радиолокатора

Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик . Служит для излучения импульсов запроса в антенну на частоте 1030 МГц

Антенна . Служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации, антенна излучает на частоте 1030МГц, и принимает на частоте 1090 МГц.

Генераторы Азимутальных меток . Служат для генерации Азимутальных меток (Azimuth Change Pulse или ACP) и генерации Метки Севера (Azimuth Reference Pulse или ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем), или 16384 Малых азимутальных меток (для новых систем), их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток, при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник . Служит для приёма импульсов на частоте 1090 МГц

Сигнальный процессор . Служит для обработки принятых сигналов

Индикатор Служит для индикации обработанной информации

Самолётный ответчик с антенной Служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

Принцип Действия Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика, для определения положения Воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Воздушные суда оборудованные ответчиками находящиеся в зоне действия луча запроса при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, Серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация типа Номер борта, Высота и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется растоянием между запросными импульсами P1 и P3 например в режиме запроса А (mode A), расстояние между запросными импульсами станции P1 и P3 равно 8 микросекунд, и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта. В режиме запроса C (mode C) расстояние между запросными импульсами станции равно 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут Воздушного судна определяется, углом поворота антенны, который в свою очередь определяется путём подсчёта Малых Азимутальных меток. Дальность определяется, по задержке пришедшего ответа Если Воздушное судно не лежит в зоне действия основного луча, а лежит в зоне действия боковых лепестков, или находится сзади антенны, то ответчик Воздушного судна при получении запроса от РЛС, получит на своём входе условие, что импульсы P1,P3

Плюсы вторичной РЛС, более высокая точность, дополнительная информация о Воздушном Судне (Номер борта, Высота), а также малое по сравнению с Первичными РЛС излучение.

Другие страницы

  • (нем.) Технология Радиолокационная станция
  • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
  • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.

Литература и сноски

Wikimedia Foundation . 2010 .

Синонимы :
  • РЛС Дуга
  • РМГ

Смотреть что такое "РЛС" в других словарях:

    РЛС - Русская логистическая служба http://www.rls.ru/​ РЛС радиолокационная станция связь Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С … Словарь сокращений и аббревиатур

Радиолокационные станции классифицируют по следующим признакам:

Происхождению радиосигнала, принимаемого при­емником РЛС,- активные РЛС (с активным и пассивным ответом), полуактивные и пассивные РЛС;

Используемому диапазону радиоволн (РЛС декаметрового, метрового, дециметрового, сантиметрового и миллиметрового диапазонов);

Виду зондирующего сигнала [РЛС с непрерывным (немодулированным или частотно-модулированным) и им­пульсным (некогерентным, когерентно-импульсным с боль­шой и малой скважностью, с внутриимпульсной частотной или фазовой модуляцией) излучением];

Числу применяемых каналов излучения и приема сигналов (одноканальные и многоканальные с частотным или пространственным разделением каналов);

Числу и виду измеряемых координат (одно-, двух- и трехкоординатные);

Способу измерения, отображения и съема координат объекта;

Месту установки РЛС (наземные, корабельные, самолетные, спутниковые);

Функциональному назначению РЛС [от малогаба­ритных переносных РЛС измерения скорости автомобилей до огромных наземных РЛС систем противовоздушной (ПВО) и противоракетной (ПРО) обороны]. Перечислим основные типы наземных, корабельных и самолетных РЛС различного назначения.

Основные типы наземных РЛС :

Обнаружения воздушных целей и наведения на них истребителей;

Управления воздушным движением (обзорные и дис­петчерские);

Обнаружения и определения координат баллис­тических ракет (БР) и искусственных спутников Земли (ИСЗ);

Целеуказания станциям управления зенитной артил­лерией и наведения зенитных управляемых ракет (ЗУР);

Управления зенитной артиллерией и ЗУР;

Обнаружения минометов;

Метеорологические;

Обзора акватории порта;

Обзора летного поля;

Обнаружения и определения скорости наземных движущихся объектов.

Основные типы корабельных РЛС :

Обеспечения кораблевождения;

Обнаружения надводных объектов и низколетящих летательных аппаратов, определения их координат;

Обнаружения и определения координат высоколетя­щих самолетов;

Управления ЗУР и зенитной артиллерией;

    обнаружения и определения координат БР и ИСЗ.

Основные типы самолетных РЛС :

Радиолокационные дальномеры;

Радиовысотомеры;

Доплеровские измерители путевой скорости и угла сноса самолета;

РЛС обнаружения самолетов и предотвращения столкновений;

Панорамные РЛС обзора земной поверхности;

РЛС бокового обзора (в том числе и с синтезиро­ванным раскрывом антенны);

РЛС перехвата и прицеливания;

РЛС наведения управляемых ракет;

Радиолокационные взрыватели.

Приведенная классификация включает далеко не все используемые типы РЛС. Однако и перечисленных типов достаточно для характеристики широты и многообразия применения радиолокационных средств.

1.6. Тактические характеристики рлс.

Тактическими называют характеристики системы, требование которым система должна отвечать, чтобы поставленная задача могла быть решена. Эти требования разработчику радиоэлектронной аппаратуры задаются. На основании тактических требований разработчик далее определяет технические характеристики системы в целом и отдельных устройств ее образующих

К основным тактическим характеристикам РЛС относят:

    Назначение системы ;

    Место установки ;

    Состав измеряемых координат ;

    Зона (область) обзора или рабочая зона системы, заданную сектором обзора (поиска) по измеряемым пара­метрам объекта;

Зоной обзора называют область пространства, в ко­торой система надежно выполняет функции, соответст­вующие ее назначению. Так, для РЛС обнаружения зоной обзора является область пространства, в которой объек­ты с заданными характеристиками отражения обнаружи­ваются с вероятностью не меньше заданной.

При работе с зоной обзора задаются следующие параметры: R max , R min , max , min , max , min .

5) Время обзора (поиска) заданного сектора или скорость обзора; Временем обзора (поиска) называют время, необходи­мое для однократного обзора заданной зоны действия системы. Выбор времени обзора связан с маневренностью наблюдаемых или управляемых объектов, объемом прост­ранства обзора, уровнем сигнала и помех, а также рядом тактических и технических характеристик системы.

    Точность измерения координат ;

Точность системы характеризуется погрешностями при измерении координат и параметров движения объекта. Причинами погрешностей являются несовершенство при­меняемого метода измерения и аппаратуры, влияние внешних условий и радиопомех, субъективные качества оператора, если процессы получения и реализации инфор­мации не автоматизированы. Требования к точности системы зависят от ее назначения. Неоправданное завыше­ние требований к точности приводит к усложнению системы, снижению ее экономичности, а иногда и надеж­ности функционирования.

Измерение параметров сигнал всегда сопровождается ошибками:

    Систематическими (появляются при измерении параметров по приборам);

    Случайными (появляются от факторов, не подлежащих учету. Поэтому эти ошибки подчиняются нормальному закону распределения).

где х – среднеквадратическая ошибка.

а) Разрешающая способность по дальности – численно характери­зуется минимальным расстоянием между двумя неподвижными це­лями, расположенными в радиальном направлении относительно РЛС, сигналы которых еще фиксируются станцией раздельно. При меньшем расстоянии между целями их раздельное радиолокацион­ное наблюдение становится невозможным.

Например, мы имеем два объекта 1 и 2. Расстояние между ними соответственно R 1 и R 2 (рис.I.1.6)

Время запаздывания одного т второго объектов (рис. I.1.7):
,
.

Расстояние между объектами начало уменьшиться (рис.I.1.8), т.е.

;
;
,

где с - мера разрешающей способности.

б) Разрешающая способность по направлению численно характе­ризуется минимальным углом между направлениями на две равно­удаленные относительно РЛС неподвижные цели, при котором их сигналы еще фиксируются раздельно. Часто разрешающая способ­ность оценивается раздельно по азимуту и углу места.

Т.е.
и
(разрешающая способность по направлению равна половине диаграммы направленности антенны).

в) Разрешающая способность по скорости оценивается минималь­ной разностью скоростей двух целей, не разрешаемых по коорди­натам, при которой их сигналы еще фиксируются раздельно.

    Пропускная способность характеризуется числом объек­тов, обслуживаемых системой одновременно или в единицу времени. Пропускная способность зависит от принципа действия системы и ряда ее тактических и технических параметров и, в частности, рабочей зоны, точности и разрешающей способности.

Пропускная способность дальномерных систем, осно­ванных на принципе запроса и активного ответа (две линии связи), ограничена ответчиком, в котором для формирования ответного сигнала на каждый запрос необ­ходимо некоторое время. В этом случае пропускную способность характеризуют вероятностью обслуживания заданного числа объектов при заданном периоде повторе­ния запросов каждым из объектов, находящихся в рабочей зоне системы;

9) Помехозащищенность РЛС - способность на­дежного выполнения заданных функций в условиях воз­действия непреднамеренных и организованных помех. По­мехозащищенность определяется скрытностью работы сис­темы и ее помехоустойчивостью.

Под скрытностью системы понимают показатель, характеризующий трудность обнаружения ее работы и из­мерения основных параметров излучаемого радиосигнала, а следовательно, и создания специально организованных (прицельных) помех. Скрытность обеспечивается примене­нием остронаправленного излучения, использованием шумоподобный сигналов с низким уровнем мощности, изме­нением основных параметров сигнала во времени.

Количественной оценкой помехоустойчивости РЛС является отношение сигнала к помехе на входе приемника, при котором погрешность измерения заданного параметра не превосходит допустимой с требуемой вероят­ностью; для РЛС обнаружения при этом должно обеспечи­ваться обнаружение сигнала с заданной р„ 0 при допустимых значениях вероятности ложной тревоги. Требуемая помехо­устойчивость достигается рациональным выбором пара­метров радиосигнала системы, а также характеристик ДНА и устройств приема и обработки сигнала.

10) Надежность - свойство объекта сохранять во времени в установленных пределах значения параметров, характери­зующих способность выполнения требуемых функций в за­данных режимах и условиях применения, хранения и транс­портировки.

В зависимости от причин, вызывающих отказы в ра­боте системы, различают следующие разновидности на­дежности:

Аппаратурную, связанную с состоянием аппаратуры;

Программную, обусловленную состоянием прог­рамм вычислительных устройств, используемых в системе;

Функциональную, т. е. надежность выполнения от­дельных функций, возлагаемых на систему, и, в частности, извлечения и обработки информации. В этом смысле помехозащищенность также может быть отнесена к функ­циональной надежности радиосистемы.

11) Масогобаритные характеристики – задается объем и масса аппаратуры;

12) Потребляемая мощность .

Начнем сначала – что же такое радиолокация и для чего она нужна? В первую очередь хочется отметить, что радиолокация – это определенная отрасль радиотехники, которая помогает при определении различных характеристик окружающих объектов. Действие радиолокации направлено на подачу радиоволн объектом на устройство.

РЛС, радиолокационная станция – это определенная совокупность различных устройств и аппаратов, которые позволяют осуществлять наблюдения за объектами. Радиоволны, которые подаются РЛС могут обнаружить исследуемую цель и составить ее подробный анализ. Радиоволны преломляются и как бы «рисуют» образ объекта. Радиолокационные станции могут работать при любых погодных условиях и отлично обнаруживать любые объекты на земле, в воздухе или в воде.

Принципы работы РЛС

Система действий проста. Радиоволны из станции направляются на объекты, при встрече с ними волны преломляются и отражаются обратно к РЛС. Это называется радиоэхо. Для обнаружения данного явления в станции устанавливаются радиопередатчики и радиоприемники, которые имеют высокую чувствительность. Раньше, еще пару лет тому назад, радиолокационные станции требовали огромных затрат. Но не сейчас. Для правильной деятельности устройств и определения объектов нужно совсем немного времени.

Все работы РЛС базируются не только на отражении волн, но также и на их рассеивании.

Где может быть использована РЛС?

Сфера применения радиолокационных систем достаточно широка.

  • Первой отраслью будет военная. Используется для определения земных, водных и воздушных целей. РЛС совершают контроль и обзор территории.
  • Сельское и лесное хозяйство. При помощи подобных станций специалисты проводят исследования для изучения почвы и растительных массивов, а также для обнаружения различного рода возгораний.
  • Метеорология. Изучение состояния атмосферы и составление прогнозов, на основе полученных данных.
  • Астрономия. Ученые с помощью станций РЛ изучают далекие объекты, пульсары и галактики.

РЛС в автоиндустрии

С 2017 года в МАИ ведутся разработки, которые направлены на создание малогабаритной радиолокационной станции для беспилотных автомобилей . Такие небольшие бортовые аппараты смогут быть установлены в каждый автомобиль в ближайшем будущем. В 2018 году уже проводятся испытания нестандартных РЛС для беспилотных летающих аппаратов. Планируется, что подобные устройства смогут определять земные объекты на дистанции до 60 километров, морские – до 100 км.

Стоит напомнить, что в 2017 также была представлена бортовая двухдиапазонная РЛС небольшого размера. Уникальное устройство было разработано для обнаружения различного рода объектов и предметов при любых условиях.

Виды радиолокации. В радиолокационных системах находят применение активная, активная с активным ответом и пассивная радиолокация.

Активная радиолокация (рис. 2.1, а) предполагает, что обнаруживаемый объект, находящийся в точке О, не является источником радиосигналов. В такой РЛС передатчик генерирует зондирующий сигнал, аантенна в процессе обзора пространства облучает цель. Приемник (Прм) усиливает и преобразует принятый от цели отраженный сигнал и выдает его на выходное устройство решающее задачу обнаружения и измерения координат объекта.

Активная радиолокация с активным ответом (рис. 2.1,б) реализует принцип запрос - ответ и отличается тем, что обнаруживаемый объект оснащен ответчиком. Передатчик запросчика вырабатывает сигнал запроса, а антенна запросчика в процессе обзора пространства облучает объект, оснащенный ответчиком. Последний принимает сигнал запроса и посылает ответный сигнал на Приняв и обнаружив этот сигнал, запросчик с помощью выходного устройства находит координаты объекта, оснащенного ответчиком. В таких системах возможны кодированные запрос и ответ, что повышает помехоустойчивость линии передачи информации. Кроме того, по линии запросчик - ответчик можно передавать дополнительную информацию. Поскольку объект активный (имеется передатчик дальность действия РЛС увеличивается по сравнению с дальностью действия обычной активной радиолокационной системы, однако РЛС усложняется (иногда этот вид радиолокации называют вторичной радиолокацйей).

Пассивная радиолокация решает задачу обнаружения активного объекта, излучающего радиоволны (рис. 2.1,в). При пассивном обнаружении цели возможны две ситуации: когда на обнаруживаемом объекте имеется радиопередатчик, сигналы которого улавливаются пассивной РЛС, и когда принимается естественное излучение пассивного объекта в радио- или инфракрасном диапазоне волн, возникающее при температуре объекта выше абсолютного нуля и при температурном контрасте с окружающими объектами. Этот вид радиолокации отличается простотой и высокой защищенностью от помех.

Рис. 2.1. Структурные схемы вариантов РЛС

Виды радиолокационных систем. По характеру размещения частей аппаратуры в пространстве различают однопозиционные, двухпозиционные (бистатические) и многопозиционные РЛС. Последние два типа РЛС отличаются тем, что их аппаратура разнесена в пространстве и эти РЛС могут функционировать как самостоятельно, так и совместно (разнесенная радиолокация). Благодаря пространственному разнесению элементов в таких системах достигаются большие информативность и помехозащищенность, однако сама система усложняется.

Однопозиционные радиолокационные системы (ОПРЛС) отличаются тем, что вся аппаратура располагается на одной позиции. Далее будем обозначать такие системы РЛС. В ОПРЛС реализуется активный или пассивный вид радиолокации (см. рис. 2.1, а - в). При активной радиолокации с активным ответом аппаратура запросчика располагается в одной точке пространства, а ответчика - в другой. В зависимости от назначения РЛС и типа используемых сигналов структурные схемы ОПРЛС могут быть конкретизированы и при этом значительно отличаться друг от друга. Рассмотрим в качестве примера работу импульсной активной РЛС обнаружения воздушных целей для управления воздушным движением (УВД), структура которой приведена на рис. 2.2, а внешний вид на рис. 2.3. Устройство управления обзором (управления антенной) служит для просмотра пространства (обычно кругового) лучом антенны, узким в горизонтальной плоскости и широким в вертикальной.

В рассматриваемой ОПРЛС используется импульсный режим излучения, поэтому в момент окончания очередного зондирующего радиоимпульса единственная антенна переключается от передатчика к приемнику и используется для приема до начала генерации следующего зондирующего радиоимпульса, после чего антенна снова подключается к передатчику и т. д.

Рис. 2.2. Структурная схема РЛС обнаружения воздушных целей

Эта операция выполняется переключателем прием-передача (ППП). Пусковые импульсы, задающие период повторения зондирующих сигналов и синхронизирующие работу всех подсистем ОПРЛС, генерирует синхронизатор (Синх). Сигнал с приемника (Прм) после аналого-цифрового преобразователя АЦП поступает на аппаратуру обработки информации -процессор сигналов, где выполняется первичная обработка информации, состоящая в обнаружении сигнала и измерении координат цели. Отметки целей и трассы траекторий формируются при вторичной обработке информации в процессоре данных.

Рис. 2.3. Обзорная РЛС УВД «Днепр»

Сформированные сигналы вместе с информацией об угловом положении антенны передаются для дальнейшей обработки на командный пункт, а также для контроля на индикатор кругового обзора (ИКО). При автономной работе радиолокатора ИКО служит основным элементом для наблюдения воздушной обстановки. Такая РЛС обычно ведет обработку информации в цифровой форме. Для этого предусмотрено устройство преобразования сигнала в цифровой код (АЦП).

Бистатические радиолокационные системы (БиРЛС) представляют собой РЛС, в которых передающая и приемная части расположены в различных точках пространства (см. рис. 2.1, г). Такие БиРЛС основаны на активном виде радиолокации.


РЛС состоит из следующих основных элементов:

Передающее устройство;

Приемное устройство;

Антенный коммутатор и антенное устройство;

Оконечное устройство;

Синхронизатор.

Структурная схема РЛС показана на рис.5.2.

Рис.5.2 Структурная схема радиолокационной станции.

Передающее устройство РЛС предназначено для формирования зондирующего сигнала и передачи его в антенну.

Приемное устройство РЛС предназначено для предварительной обработки отраженного сигнала, принятого антенной. Оно осуществляет выделение полезного сигнала из смеси сигнала и помех, преобразование радиосигнала в видеосигнал и передачу его в оконечное устройство.

Антенный коммутатор предназначен для подключения передатчика к антенне при излучении зондирующего сигнала и подключения приемника к антенне при приеме отраженного сигнала.

Оконечное устройство для анализа полезного сигнала. Тип оконечного устройства зависит от вида сигнала (аналоговый или цифровой), получателя радиолокационной информации (оператор, устройство автоматического определения координат, ЭВМ и т.д.) и типа радиолокационной информации.

Синхронизатор обеспечивает заданную последовательность работы элементов РЛС. Так, например, в наиболее распространенных РЛС с импульсным режимом работы синхронизатор выполняет следующие функции:

Согласование момента формирования зондирующего импульса с моментом запуска временной развертки индикатора или нулевым отсчетом вычислительного устройства;

Согласование положения диаграммы направленности антенны в пространстве с разверткой индикатора или нулевым отсчетом вычислительного устройства;

Определение момента открытия приемника и интервала его работы.

При этом принципиально возможны следующие способы синхронизации:

1. Синхронизация от передатчика к оконечному устройству.

В таких РЛС момент формирования зондирующего импульса определяет момент запуска временной развертки индикатора или момент обнуления вычислительного устройства. Достоинство такого способа синхронизации состоит в том, что нестабильность частоты следования зондирующих импульсов передатчика не влияет на точность радиолокационных измерений. Однако таким РЛС свойственна нестабильность запуска оконечного устройства, которую полностью устранить трудно.

2. Синхронизация от оконечного устройства к передатчику.

В этом случае работой оконечного и передающего устройства управляет высокостабильный генератор, входящий в состав оконечного устройства. Благодаря этому достигается высокая точность радиолокационных измерений. Однако возникают проблемы при изменении частоты следования зондирующих импульсов.


3. Синхронизация с помощью отдельного высокостабильного кварцевого генератора, не входящего в состав передающего или оконечного устройства.

Такой способ синхронизации применяют в большинстве современных РЛС, которые обычно предусматривают возможность изменения частоты следования зондирующих импульсов в процессе работы станции. Это необходимо для обеспечения помехозащищенности РЛС при работе в условиях пассивных или активных радиолокационных помех.

Структурная схема РЛС в основном зависит от ее назначения, типа зондирующего сигнала (импульсный или непрерывный) и модулируемого параметра радиосигнала.

Однако в общем случае процедура обработки радиосигнала в РЛС должна быть согласована не только с типом зондирующего сигнала, но и с видом помех. Поэтому структурная схема РЛС должна учитывать источники активных и пассивных радиоэлектронных помех.

Эта задача усложняет работу любой РЛС, т.к. помехи вызывают искажение отраженного от цели сигнала и ведут к потере полезной радиолокационной информации. Поэтому в процессе обработки отраженного сигнала стремятся подавить помехи, что достигается введением в состав структурной схемы РЛС устройств защиты от радиоэлектронных помех.

Поделиться: